National Journal on Advances in Computing & Management, Vol. 3 No. 2 October 2012 1

AN EFFECTIVE ORCHESTRATION ALGORITHMS PERTAINED TO BENCHMARK
APPLICATIONS

Andrews J.1, Sasikala T. 2

'Research Scholar, Sathyabama University, Chennai, India
2Principal, SRR Engineering College, Padur, Chennai, India
Email: 1andrews_593@yahoo.com

ABSTRACT

Code optimization involves the application of rules and algorithms to program code, and its main objective is to run the
code faster with lesser memory. But achieving this target involves lot of complication because arriving at the compiler
configuration for a particular problem is a complex process. The performance of the program measured by time and
memory depends on the machine architecture, problem domain and the settings of the compiler. There have been several
proposed techniques that search the space of compiler options to find solutions. However such approach can be
expensive. In current compilers, through command line arguments, the user must decide which optimization is to be
applied in a given compilation run. But it is not a long term solution. Because compiler optimizations get increasingly
numerous and complex, this problem must find an automated solution.In this paper, it is proposed to study the
classification of problems, identification of ideal objective functions for different tasks and the ordering of objective function
for optimization. In this paper we proposed an effective orchestration algorithm to select best set for a particular problem
from larger set options. Many previous works consider only limited set of options. In this paper, we implemented compiler
optimization selection algorithms such as branch and bound strategy and advanced combined elimination algorithm and
evaluated its execution speed up. We argue that advanced combined elimination algorithm works better when compared
to branch and bound strategy by showing experimental results using benchmark applications.

Key words: Compiler optimization, Benchmark Applications, Branch and Bound, Combined Elimination

I. INTRODUCTION

Recent version of compiler provides a larger set
of optimization techniques, for users to fine tune the
performance of various benchmark applications. But
selecting the best set of options is not an easy, task
especially for average users who do not have in depth
understanding of the compiler options. Because
selecting best set of options from various candidate
options depends on system architecture and problem
domain. Each optimization tries to improve the
performance of the application, although they are not
always effective .Through command line flags, the user
can decide which optimizations are to be applied in a
given compilation run, but clearly it is not a long term
solution. As compiler options get increasingly numerous
and complex, the problem must find an automated
solution.

optimization settings. This previous work is based on
iteratively enabling certain optimizations, running the
compiled program and, based on its performance,
deciding on a new optimization setting. Pan et al
introduce a new algorithm called combined Elimination
(CE) [2],13] that was shown to outperform all previous
search-based techniques in finding good optimization
settings with considerably fewer evaluations. However,
these pure search or “orchestration” approaches do not
use prior knowledge of the hardware, compiler, or
program and instead attempt to obtain this knowledge
online. Thus, every time a new program is optimized,
the system starts with no prior knowledge.

In this paper we have considered modified
version of combined elimination algorithm. This
algorithm is compared with branch and bound
strategy.GCC compiler provides three levels of
optimization techniques [1],(5-6]. To obtain the best
performance a user usually applies the highest
optimization level —O3.In this level the compiler perform

Because modern compiler provides larger number
of optimization techniques and complex interactions

among its various techniques finding optimal functions
for specific benchmark applications is hard and time
consuming process. There has been much previous
work on automatically searching for the best

the most extensive code analysis and expects the
compiler generated code to deliver the highest
performance. In this paper we proposed effective
orchestration algorithm to select the compiler options

2 National Journal on Advances in Computing & Management, Vol. 3 No. 2 October 2012

for a particular problem from large set options. Many
previous works consider only limited set of options. For
this work, we implemented compiler optimization
selection algorithm advanced combined elimination can
decide which optimizations are to be applied in a given
compilation run, but clearly it is not a long term
solution. As compiler options get increasingly numerous
and complex, the problem must find an automated
solution.

Il. ORCHESTRATION ALGORITHMS

2.1 Advanced combined elimination strategy
Let S be the Set of available Optimization options

Let B represents selected compiler options set.
(i) Find Tg, by applying all flags are ON.

(i) Compile the program with Tg configuration and
measure the program performance.

(i) Calculate Relative improvement percentage (RIP)
for each and every optimization options. Relative
improvement percentage is calculated based on
finding the time required by applying particular
flag ON and OFF with respect to Tg.

(iv) Store all the values in an array based on
ascending order. i.e the most negative RIP is
stored in first position of the array.

(v) Remove the first two most negative RIP’s from
an array instead of one. Now the value of Tg is
changed in this step.

(vi) Remaining values in an array i.e (i) vary from 3
to n, Calculate RIP, and store the negative RIP’s
in array.

(v) If all values in an array represent positive values
then set of flags in B represents best set.

Else

(vi) Repeat steps (ii) until B contains only positive
values.

(vii) Stop
2.2. Branch and Bound Strategy Algorithm

Let S be the Set of available Optimization
functions such as {F1,F2, ... Fn}

Let B be the set having appropriate settings
which is either ON or OFF

(i) Initialization.

(i) Initialize default individual setting of flag for each
function in set B

iy Calculate RIP_UB
(iv) While (s<> empty) repeat step (v)
(v) For each Fxin S, x=1to n
Compute RIP (Fx=0)
Find A,the option in S with most negative RIP.

Find the subset & from S, of those functions
whose RIP<

(50% of RIP_UB)
if S’ set is empty then return;
else
For all the elements in &
Set respective flag off in B; Remove it from S
if RIP (Fp=0)<RIP_UB
RIP_UB=RIP (Fa=0)
(vi) Result Ready;
(vii) Stop

lll. EXPERIMENTAL SETUP

In this paper we have considered GCC Version
(4.3.2). GCC provides three levels of optimization
techniques. Previous work considered only limited set
of optimization techniques. This paper proposes larger
set of optimization techniques.

3.1 Levels of Optimization

LEVEL - “00”

With this level of optimization the compiler tries
to reduce the code size and execution time without
performing any optimization.

LEVEL - “O1”

Optimizing compilation takes more time and more

memory for a large function.
LEVEL - “02”
This level optimizes more than the previous level.

Andrews et.al. : An Effective Orchestration Algorithms Pertained ... 3

LEVEL - "03”

This option turns on more expensive
optimizations such as function in lining, in addition to
all the optimizations of the lower levels. This
optimization may increase speed of the resulting
executable.

32 Benchmark Applications

The Mibench benchmark [4] suite programs were
used to experiment the proposed algorithm. These
benchmark suites are comparable with SPEC
benchmark suite.

1. Bzip2: for compression

2. Consumer_jpeg_c: To add annotations, titles,
index terms, etc. in JPEG files.

3. Consumer_tiff2bw: converts an RGB to a
grayscale image by combining percentages of the
red, green and blue channels.

4. gsort: for performing sorting.
5. dijkstra: for computing shortest paths.

6. patricia: datastructure used in place of full trees
with very sparse leaf nodes.

7. security blowfish: document encoding and
decoding.

8. SUSAN: feature detection.

3.3 Metrics used for Evaluation

Relative Improvement Percentage (RIP), RIP (Fi),
which is the relative difference of the execution times
of the two versions with and without Fi.

RIP (Fi)=T(Fi=0)-T(Fi=1)/T(Fi=1) x 100 1]
If Fi=1 then Fi is ON, else OFF

The baseline of this approach switches on all
optimizations.

Tg=T(Fi=1)=T(F1=1,F2=1,...Fn=1), Where Tp
represents base time.

RIP (Fi=0)=T(Fi=0)- Tg/Tgx 100 2]

If RIP (Fi=0) <0, the optimization of Fi has a
negative effect, so it is better to turn off the function.

Architecture used for testing was Intel Core 2
Duo processor at 2.80 Ghz. With 4GB RAM using

ubuntu operating system with 2MB L2 cache, and the
compiler used for testing was GCC 4.3.2.

3.4 Creation of script file for automation
#!/bin/sh

Loc=/nn/gsort.c

#log file description

Log1=/nnffirst.log

Log2=/nn/res.log

Log3=/nn/res2.log

Log4=/nn/res3.log

Log5=/nn/res4.log

#Level-“01”

gec -Wall -o1 —fauto-inc-dec $loc —o0 dump1
gcc -Wall -o1 —fno-auto-inc-dec $loc -0 dump2
gcc —Wall -o1 —fcprop-registers $loc -0 dump3
gcc —Wall -o1 —fno-cprop-registers $loc -0 dump4
gcc —Wall -o1 —fdce $loc -0 dump5

gcc —Wall -o1 —fno-dce $loc -0 dump6
#Level-“02"

gcc —Wall -02 —falign-labels $loc o dump7

gcc -Wall -02 —fno-align-labels $loc -0 dump8
gcc —Wall -02 —falign-loops $loc —o dump9

gcc —Wall -02 —fno-align-loops $loc o dump10
#Level-“03"

gcc —Wall -03 —finline-functions $loc -0 dump11
gcc —Wall -03 —finline-functions $loc -0 dump12
gcc -Wall -03 —funswitch-loops- $loc o dump13
gcc -Wall -03 —fno-unswitch-loops- $loc —o dump13
#writing flag ON time in a file

Just/binftime —f “\tit %e” —o $Log1 /nn/.dump1
while read line;

do

echo —e “$line”;

file1=$line;

done<$log1

cat /dev/null>$log1

IV. RESULTS AND DISCUSSIONS

Using branch and bound optimization algorithm
we have selected best set of optimal techniques for a
given benchmark applications after much iteration.

4 National Journal on Advances in Computing & Management, Vol. 3 No. 2 October 2012

Execution time is measured for each and every bench
mark applications. Similarly with the help of advanced
combined elimination algorithm we have selected best
set of optimal techniques. Then these two algorithms
are compared based on their execution speed up. The
following Table 1 shows execution speed up between
combined elimination algorithm and branch and bound
strategy.

Table 1. Execution speed up

Advanced Branch and
Benchmark combined
. bound

elimination
Bzip 2 1.2 0.9
Consumer_jpeg_c 1.1 1
consumer_tiff2bw 1.6 1.2
dijkstra 2.2 1.5
patricia 1.8 1.4
security blowfish 1 1.2
Susan 1.3 1.3

The above table shows execution speed up
between advanced combined elimination algorithm and
branch and bound algorithm. From the above table we
can conclude that advanced combined elimination gives
best execution speed up for most of the benchmark
applications when compared to branch and bound
algorithm.

N
N

Execution speed up
-
wn

05 M Advanced combined
elimination

W Branch and bound

50 -
40
30 -
20 |

= Advanced Combined
10 - Elimination

0 + A‘D/: = Branch and Bound
Va i\

10 4o B1721 3 357

Relative Improvement Percentage

-20 -

.30 J
Optimization Techniques

Benchmark Applications

Fig. 1 Execution speed up between Advanced
combined elimination and branch & bound

Fig. 2 Relative improvement percentage for Dijkstra

Figure 2 shows relative improvement percentage
for a Dijkstra’s benchmark applications. Relative
improvement percentage is measured using equation
(2). The above figure plotted only after the optimal set
is found for a given benchmark applications after much
iteration. The technique which gives an negative impact
eliminated automatically during iteration.The techniques
which gives positive impact included in an optimal set.
Similarly relative improvement percentages for other
benchmark applications are measured in this fashion.

V. CONCLUSION AND FUTURE WORK

With the help of an effective orchestration
algorithms we can find best set of optimal techniques
for a given benchmark applications. Advanced
combined elimination which gives better speed up when
compared to branch and bound strategy.In future we
can design effective framework for selecing optimal set
by consider other compilers such as ROSE [9],
LLVM[7] and open path [8] compiler. In future we can
design a generalized framework independent of
architecture by considering larger set of benchmark
applications.

REFERENCES

[1] GCC online
http://gcc.gnu.org/onlinedocs/

[2] Z. Pan and R. Eigenmann (2006), ‘Fast and effective
orchestration of compiler optimizations for automatic
performance tuning’, In proc.of the int.symp.on code
generation and optimization, pp. 319-332.

[B] Z Pan and R. Eigenmann (2004), ‘Compiler
optimization orchestration for peak performance’, In
proc. of the int.symp. on code generation and
optimization, pp. 319-332.

documentation

Andrews et.al. : An Effective Orchestration Algorithms Pertained ... 5

[4]

[5]

[6]

[7]

[8]

[9]

Mathew R. Guthaus, Jeffry S. Ringberg et al.(2001),
‘Mibench:A free commercially representative embedded
benchmark suite’, Workload characterization, 2001.
WWC-4.IEEE int.workshop on, pp.3-14.

Wiliam Von Hagen(2006), ‘The definitive guide to
GCC’, Apress publications, second edition, pp.101-117.

Brian J. Gough (2005), ‘An introduction to GCC for
gcee and g++, Revised edition, pp 45-53.

LLVM: the low level virtual machine compiler
infrastructure. http://livm.org.

Open 64: an open source optimizing compiler.
www.open64.net.

ROSE:www.rosecompiler.org.

J.Andrews received the B.E
degree in Computer Science
& Engineering from
Dr.sivanthi Aditanar college of
Engineering, Manonmanium
Sundaranar University
Tirunelveli, India in 1999 and

M.E degree in Computer
t‘ Science & Engineering from

Sathyabama University,
Chennai, India in 2006. He is currently doing research
in the area of Compiler Optimization in Computer
Science & Engineering at Sathyabama University,
Chennai, India.

He works currently as an Assistant Professor for
the Department of Information Technology at SRR
Engineering College, Chennai and he has more than
10 Years of teaching experience. He has participated
and presented many Research Papers in International
and National Conferences. His area of interests
includes Compiler Design, Theory of Computation.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

